\qquad
\qquad Date: \qquad

1. Use the diagram below for problem 1: Find the measure of angles $\angle \mathrm{AOD}, \angle \mathrm{DOC}, \angle \mathrm{COB}, \angle \mathrm{AOC}, \angle \mathrm{DOB}$.

$\mathrm{m} \angle \mathrm{AOD}=$ \qquad $\mathrm{m} \angle \mathrm{DOC}=$ \qquad
$\mathrm{m} \angle \mathrm{COB}=$ \qquad $\mathrm{m} \angle \mathrm{AOC}=$ \qquad
$\mathrm{m} \angle \mathrm{DOB}=$ \qquad
2. Angle R is 30 degrees less than twice the measure of Angle T. Angles R and T are supplementary. Find the measure of each angle.
$\mathrm{m} \angle \mathrm{R}=$ \qquad
$\mathrm{m} \angle \mathrm{T}=$ \qquad
3. Which of the following statements are correct? Select all that apply.
a.) $\angle 1$ and $\angle 4$ are vertical angles.
b.) $\angle 3$ and $\angle 4$ are complementary angles.
c.) $\angle 5$ and $\angle 4$ are supplementary angles.
d.) $\angle 1$ and $\angle 3$ form a linear pair.
e.) $\angle 1$ and $\angle 2$ are adjacent angles.
f.) $\angle 5$ is a vertical angle to the combination of $\angle 2 \& \angle 3$.
4. Using the diagram in problem 4. If the $\mathrm{m} \angle 3=36$, find the measure of all other angles.

5. If $\angle \mathrm{MFG}$ and $\angle \mathrm{EFN}$ are vertical angles and $\mathrm{m} \angle \mathrm{MFG}=7 \mathrm{x}-18$ and $\mathrm{m} \angle \mathrm{EFN}=5 \mathrm{x}+10$, find the value of x and the measure of each angle.
$x=$ \qquad
$\mathrm{m} \angle \mathrm{MFG}=$ \qquad
$\mathrm{m} \angle \mathrm{EFN}=$ \qquad
6. If $m \angle C B D=5 x+25$ and $m \angle A B D=2 x+29$ find the value of x and the measure of each angle.
$\mathrm{x}=$ \qquad
$\mathrm{m} \angle \mathrm{CBD}=$ \qquad
$\mathrm{m} \angle \mathrm{ABD}=$ \qquad

7. If $\mathrm{m} \angle \mathrm{ECB}=6 \mathrm{x}$ and $\mathrm{m} \angle E C D=3 \mathrm{x}-11$ and $\mathrm{m} \angle \mathrm{DCB}=74$. What is the value of x ?

8. In the diagram below $\overrightarrow{Z P}$ bisects $\angle O Z Q, m \angle O Z P=9 x-2$ and $m \angle Q Z P=5 x+14$. Find x , the measure of each angle and $\mathrm{m} \angle \mathrm{OZQ}$.

